14 research outputs found

    A Learning Automaton-based Scheme for Scheduling Domestic Shiftable Loads in Smart Grids

    Get PDF
    In this paper, we consider the problem of scheduling shiftable loads, over multiple users, in smart electrical grids. We approach the problem, which is becoming increasingly pertinent in our present energy-thirsty society, using a novel distributed game-theoretic framework. In our specific instantiation, we consider the scenario when the power system has a local-area Smart Grid (SG) subnet comprising of a single power source and multiple customers. The objective of the exercise is to tacitly control the total power consumption of the customers’ shiftable loads so to approach the rigid power budget determined by the power source, but to simultaneously not exceed this threshold. As opposed to the “traditional” paradigm that utilizes a central controller to achieve the load scheduling, we seek to achieve this by pursuing a distributed approach that allows the users¹ to make individual decisions by invoking negotiations with other customers. The decisions are essentially of the sort where the individual users can choose whether they want to be supplied or not. From a modeling perspective, the distributed scheduling problem is formulated as a game, and in particular, a so-called “Potential” game. This game has at least one pure strategy Nash Equilibrium (NE), and we demonstrate that the NE point is a global optimal point. The solution that we propose, which utilize

    Mitochondrial physiology

    Get PDF
    As the knowledge base and importance of mitochondrial physiology to evolution, health and disease expands, the necessity for harmonizing the terminology concerning mitochondrial respiratory states and rates has become increasingly apparent. The chemiosmotic theory establishes the mechanism of energy transformation and coupling in oxidative phosphorylation. The unifying concept of the protonmotive force provides the framework for developing a consistent theoretical foundation of mitochondrial physiology and bioenergetics. We follow the latest SI guidelines and those of the International Union of Pure and Applied Chemistry (IUPAC) on terminology in physical chemistry, extended by considerations of open systems and thermodynamics of irreversible processes. The concept-driven constructive terminology incorporates the meaning of each quantity and aligns concepts and symbols with the nomenclature of classical bioenergetics. We endeavour to provide a balanced view of mitochondrial respiratory control and a critical discussion on reporting data of mitochondrial respiration in terms of metabolic flows and fluxes. Uniform standards for evaluation of respiratory states and rates will ultimately contribute to reproducibility between laboratories and thus support the development of data repositories of mitochondrial respiratory function in species, tissues, and cells. Clarity of concept and consistency of nomenclature facilitate effective transdisciplinary communication, education, and ultimately further discovery

    Mitochondrial physiology

    Get PDF
    As the knowledge base and importance of mitochondrial physiology to evolution, health and disease expands, the necessity for harmonizing the terminology concerning mitochondrial respiratory states and rates has become increasingly apparent. The chemiosmotic theory establishes the mechanism of energy transformation and coupling in oxidative phosphorylation. The unifying concept of the protonmotive force provides the framework for developing a consistent theoretical foundation of mitochondrial physiology and bioenergetics. We follow the latest SI guidelines and those of the International Union of Pure and Applied Chemistry (IUPAC) on terminology in physical chemistry, extended by considerations of open systems and thermodynamics of irreversible processes. The concept-driven constructive terminology incorporates the meaning of each quantity and aligns concepts and symbols with the nomenclature of classical bioenergetics. We endeavour to provide a balanced view of mitochondrial respiratory control and a critical discussion on reporting data of mitochondrial respiration in terms of metabolic flows and fluxes. Uniform standards for evaluation of respiratory states and rates will ultimately contribute to reproducibility between laboratories and thus support the development of data repositories of mitochondrial respiratory function in species, tissues, and cells. Clarity of concept and consistency of nomenclature facilitate effective transdisciplinary communication, education, and ultimately further discovery

    Detection of metallo-β-lactamases-encoding genes among clinical isolates of Pseudomonas aeruginosa in a tertiary care hospital, Kathmandu, Nepal

    No full text
    Abstract Objectives This study was carried out to determine the prevalence of metallo-β-lactamases (MBLs) producing Pseudomonas aeruginosa in imipenem-nonsusceptible isolates and to detect MBL-encoding genes among MBLs-positive isolates. Results Metallo-β-lactamases production was detected in 68.6% isolates of P. aeruginosa with reduced susceptibility to imipenem. The bla VIM-2 gene was detected in 75% isolates and bla IMP-1 was detected in 25% isolates. All MBLs-positive isolates were multidrug resistant with a high level of resistance to imipenem (MIC 16 to ≥ 32 µg/ml), meropenem (MIC 16 to ≥ 32 µg/ml), and ceftazidime (MIC 64 to ≥ 512 µg/ml). All MBL-positive isolates were susceptible (MIC ≤ 2 µg/ml) to colistin. We found high prevalence of MBL-producing P. aeruginosa. To our knowledge this is the first report of detection of bla VIM-2 and bla IMP-1 in P. aeruginosa from Nepal. This indicates the need for awareness to prevent the spreading of these resistant isolates in hospital setting

    Comparing additionality of tuberculosis cases using GeneXpert or smear-based active TB case-finding strategies among social contacts of index cases in Nepal : tropical medicine and infectious disease

    Get PDF
    Funding: The study obtained funding from European Union, Horizon 2020—IMPACT TB project (grant number: 733174).This study compares the yield and additionality of community-based active tuberculosis (TB) active case-finding strategies using either smear microscopy or GeneXpert as the TB diagnostic test. Active case-finding strategies screened social contacts of index cases and high-risk groups in four districts of Nepal in July 2017–2019. Two districts (Chitwan and Dhanusha) applied GeneXpert testing and two districts (Makwanpur and Mahotarri) used smear microscopy. Two control districts implemented standard national TB program activities. Districts implementing GeneXpert testing screened 23,657 people for TB, tested 17,114 and diagnosed 764 TB cases, producing a yield of 4.5%. Districts implementing smear microscopy screened 19,961 people for TB, tested 13,285 and diagnosed 437 cases, producing a yield of 3.3%. The screening numbers required were 31 for GeneXpert and 45.7 for smear districts. The test numbers required were 22.4 and 30.4 for GeneXpert and smear. Using the TB REACH additionality method, social contact tracing for TB through GeneXpert testing contributed to a 20% (3958/3322) increase in district-level TB notifications, smear microscopy 12.4% (3146/2798), and −0.5% (2553/2566) for control districts. Therefore, social contact tracing of TB index cases using GeneXpert testing should be implemented throughout Nepal within the TB FREE initiative to close the notification gap and accelerate progress toward END TB strategy targets.Publisher PDFPeer reviewe
    corecore